
Project 2: Online Catalog
Due Wednesday, February 18th, 2015 at 5:00pm

Table of Contents

I. Introduction

II. Requirements

1. The Full Collection

2. An Add Entry Form

3. A Search Form

4. Form Checking and Data Validation

5. Data Validation Description

6. A Persistent Data File

7. Appropriate Web Design

8. Good Practices

III. Submission

IV. Grading Rubric

V. Relevant Topics

I. Introduction

Create a small catalog website that displays any collection of objects in your database. Instead of an
actual database, however, you will be using your knowledge of file input/output in PHP to read and
write information about your objects in a file (data.txt) on the server.

Examples of catalogs you might consider include:

● A music catalog like Billboard or Discogs

○ search by album, song, singer, genre, year, popularity

● A movie catalog like IMDB (but more simplified)

○ search by title, actor, genre, year, rating, awards

● A videogame catalog like VGCollect or Steam (without the download part)

○ search by platform, genre, series, developer, distributor, year, rating, tags

● An online store like Amazon or Ebay (without the payment part)

○ search by department, product name, gender/size/color, seller, price

● A visual dictionary (like a PokéDex or Bird Guide)

○ search by region, order, species, evolution, statistics, diet, time of activity

● A simple blog or forum like Tumblr, Twitter, or Reddit (but without user accounts)

○ search by tags, username, subject/title, description keyword, date, popularity

II. Requirements

http://www.billboard.com/charts
http://www.discogs.com/
http://www.imdb.com/
http://vgcollect.com/browse
http://store.steampowered.com/
http://www.amazon.com/
http://www.ebay.com/
http://www.google.com/url?q=http%3A%2F%2Fpokemondb.net%2Fpokedex%2Fall&sa=D&sntz=1&usg=AFQjCNH_sP_Hjo0m8azU2xyDkZeCzQDZ3w
http://www.allaboutbirds.org/guide/search
https://www.tumblr.com/
https://twitter.com/
http://www.reddit.com/

1. The Full Collection (10 pts) [jump to point breakdown]

Your website must allow the user to view the entire collection of entries in your catalog at once, and

your collection (in your data.txt file) should contain at least five (5) complete entries.

For example, your collection might look like the following on the index page:

 Shrek Mike Myers, Eddie Murphy Adventure/Comedy PG

 Despicable Me Steve Carell, Chris Renaud Comedy/Animation PG

 Toy Story Tom Hanks, Tim Allen Fantasy/Adventure G

 Treasure Planet Joseph Gordon-Levitt, Emma Thompson Romance/Adventure PG

 The Iron Giant Vin Diesel, Jennifer Aniston Action/Adventure PG

2. An Add Entry Form (15 pts) [jump to point breakdown]

Use an HTML form that allows users to add an entry into your data file. An entry must have at least four

(4) types of data fields (or categories) associated with it.

An example of this for a movie catalog would be:

1. Title: Shrek

2. Actors: Mike Myers, Eddie Murphy

3. Genre: Adventure/Comedy

4. Rating: PG

Note: If you want to include images for each entry, you do not need to support image uploads (that’s a

topic for Project 3). Instead, you can have a set of icons on the server that the user can select from a

drop-down menu, or you can ask the user to type a valid image URL into a text field.

3. A Search Form (15 pts) [jump to point breakdown]

Use another HTML form that allows users to search for specific entries in your collection. Your search

functionality does not need to have complicated natural language processing, but it must allow for each

of two types of searches:

1. Filter Entries by a Single Category

 Ex: Search for All Movies where Rating == PG

2. Filter Entries by Multiple Categories

 Ex: Search for All Movies where Rating == PG and Genre contains “Comedy”

4. Form Checking and Data Validation (15 pts) [jump to point breakdown]

Your code should contain a reasonable amount of input checking. We will test your input checking

rigorously, so please think hard about what you will allow and not allow as user input, and have a good

reason for what you decide.

For example, if a form field is meant for searching the category “year,” you should only accept 4-digit

integers within a reasonable range (ex: movie year released might be restricted to no earlier than the

release year of the first ever movie, and before a certain future year).

Other things you may want to consider:

● Should duplicate entries be allowed?
● Should special characters be allowed as input for a name?
● What is the maximum length of a field? Would you accept 1000 characters for a name?

5. Data Validation Description (10 pts) [jump to point breakdown]

Describe your strategy for data validation and form checking in a PDF file (checking.pdf) and upload

it to CMS. Your checking.pdf file should contain the following:

● A description of how you check user input and how you determine which data is valid

● A justification of why you allow some types of data and not others

○ What type of data did you check for in each field/category/filter and why?

■ Do you allow special characters ($, # , !) for entry names? Why?

■ Do you allow alphabetic characters in your date fields? Why?

■ Do you allow duplicate entries? Why?

● An example of a search over multiple categories that can be performed using the search form

on your website

○ An example of an existing entry that would result from your example query

○ An example of an existing entry that would not result from your example query

● Any other design decisions, additional functionality, or notes you want us to know about

6. A Persistent Data File (10 pts) [jump to point breakdown]

The data file (data.txt) on the server should always reflect the current state of your collection. If a user

successfully submits a valid Add Entry form, then that new entry should appear in your data file even

after the user closes and opens the browser again. The only exception to this is if the entry is a

duplicate. You should also fill this file with the first five (5) complete entries in your collection before

submission.

7. Appropriate Website Design (10 pts) [jump to point breakdown]

The design of the site should appropriately match the theme of your catalog site. The site should have

a consistent look and feel, with clear, easy-to-follow navigation. If you display results on multiple

different pages, you should be able to travel back to the previous page using navigation links or

breadcrumbs, instead of relying on the browser’s back button.

Note: For this project and future assignments, the use of frameworks will not be allowed, but it is fine to

use a preprocessor for your CSS as long as the output is legible to the grading TA.

8. Good Practices (15 pts) [jump point breakdown]

All code should be easy to read and understand by anyone. Make use of comments to explain things

that aren’t obvious, and name your functions and variables appropriately. Your code should be indented

properly so that it’s easy to see which lines belong to each element (HTML/CSS) or function

(PHP/JavaScript). It’s also good practice to put all your CSS into external CSS files. Avoid using inline

or embedded CSS unless you need to generate styles dynamically through PHP or JavaScript.

Double check to make sure all your HTML output validates, which you can check at

http://validator.w3.org/. Also test your add and search forms extensively, so you don’t get PHP errors

when you submit them.

When you upload your files to the server, keep them organized in appropriately named directories. CSS

files should go into a css folder, image assets in an assets folder, and JavaScript files in a scripts

folder. These subfolders and your HTML/PHP pages should go into the project folder p2.

III. Submission

1. On the course server, upload your website to the p2 folder. If you don’t find a p2 folder in your

www folder, create one with that exact name.

2. Your p2 folder must contain

a. Either an index.html or index.php file

b. A data.txt file containing your catalog collection and used for File I/O

c. Any CSS, JavaScript, image assets, or additional HTML/PHP files needed for your site

d. If you used a CSS preprocessor like SASS, make sure the output is readable, not

compressed, so TAs can see what you did

3. Double-check that your website is uploaded to the correct location by accessing the following

URL, replacing username with your server username (netidsp15):

 http://info230.cs.cornell.edu/users/username/www/p2/

4. On CMS, upload your checking.pdf file to the Project 2 assignment. Also include a copy of

checking.pdf in your p2 folder as a backup in case CMS is not working during grading.

IV. Grading Rubric:

The Full Collection (_10_/ 10 pts) [jump to full description]

● The website allows the user to view all entries that exist in the collection (_2_/ 2pts)

● The collection contains at least five (5) complete entries (_5_/ 5pts)

● Each entry in the collection contains at least four (4) data fields (_3_/ 3pts)

An Add Entry Form (_15_/ 15 pts) [jump to full description]

● The website allows users to submit an Add Entry form (_2_/ 2pts)

● The form allows users to specify at least four (4) different data fields per entry (_3_/ 3pts)

● The collection on the website is updated when the Add Entry form is submitted (_5_/ 5pts)

● The form works as expected (_5_/ 5pts)

http://validator.w3.org/

A Search Form (_15_/ 15 pts) [jump to full description]

● The website allows the user to submit a Search form (_2_/ 2pts)

● Users can search for a subset of the collection matching a single data field (_3_/ 3pts)

● Users can search for a subset of the collection matching multiple data fields (_5_/ 5pts)

● The form works as expected (_5_/ 5pts)

Form Checking and Data Validation (_15_/ 15 pts) [jump to full description]

● The user is appropriately notified of improper data values or duplicate entries (_3_/ 3pts)

● Duplicate entries are only allowed if justified in checking.pdf (_2_/ 2pts)

● The implementation matches the description in checking.pdf (_5_/ 5pts)

● Form data is handled appropriately under all common sense test cases (_5_/ 5pts)

○ The forms don’t accept letters or symbols in a numerical field

○ The forms properly handle embedded HTML tags or JavaScript code from user input

Data Validation Description (_10_/ 10 pts) [jump to full description]

● A PDF file checking.pdf is uploaded to CMS (without this, we can’t grade your project)

● Includes a reasonable, justified description of form checking and validation (_5_/ 5pts)

● The sample query returns at least one entry, and not all entries are returned (_3_/ 3pts)

● The sample query is not hard coded (other queries work just as well) (_2_/ 2pts)

A Persistent Data File (_10_/ 10 pts) [jump to full description]

● The server contains a data.txt file containing all of the entries in the collection (_5_/ 5pts)

● This file is updated appropriately when users submit the Add Entry form (_5_/ 5pts)

Appropriate Website Design (_9_/ 10 pts) [jump to full description]

● All content is legible and easy to read and understand (_3_/ 3pts)

● Design uses appropriate color, typography, layout, and positioning (_3_/ 4pts)

● Navigation is easy to follow (_2_/ 2pts)

● No dangling pages (user shouldn’t need to press the back button) (_1_/ 1pt)

Color scheme could be better and/or justified in the text. Fonts could be altered to fit a theme.

Good Practices (_15_/ 15 pts) [jump to full description]

● Cross-Browser Compatibility (_3_/ 3pts)

○ Website displays and functions reasonably well across all common browsers

○ Test in Firefox, Chrome and Safari

● Code Clarity (_4_/ 4pts)

○ Comments are used where needed

○ Lines are indented correctly

○ Variable and function names are human-readable

○ Check HTML, CSS, PHP, and JavaScript files

● All HTML output validates (http://validator.w3.org/) (_1_/ 1pt)

● Files on the server are well organized in appropriately named directories (_2_/ 2pts)

● CSS styles are written in an external style sheet, unless dynamically generated (_2_/ 2pts)

● Website is free of PHP errors (_3_/ 3pts)

WOW Bonus Points (_8_/ +10 pts)

Website goes above and beyond expectations in at least one of the following ways:

● Includes PHP functionality for sorting entries

● Includes PHP functionality for modifying or deleting existing entries

● Includes PHP functionality for resetting the data.txt file

● Includes PHP functionality for highlighting of search terms with CSS in search results

● Makes use of nontrivial Javascript or advanced PHP (like image uploads or sensible use of PHP

objects)

Sorting and use of JavaScript in the search are well done.

V. Relevant Topics

This project is designed to give you more practice with the following topics:

● File I/O

○ PHP file(), file_get_contents(), file_put_contents()

○ PHP array(), implode(), explode()

○ PHP for(), foreach(), while() loops

○ PHP string functions str_split(), str_replace(), substr()

● Forms and Data Entry

○ HTML <form></form>, form elements

○ HTML <input />, input attributes

http://validator.w3.org/
http://php.net/manual/en/function.file.php
http://php.net/manual/en/function.file-get-contents.php
http://php.net/manual/en/function.file-put-contents.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/function.implode.php
http://php.net/manual/en/function.explode.php
http://php.net/manual/en/control-structures.for.php
http://php.net/manual/en/control-structures.foreach.php
http://php.net/manual/en/control-structures.while.php
http://php.net/manual/en/function.str-split.php
http://php.net/manual/en/function.str-replace.php
http://php.net/manual/en/function.substr.php
http://www.w3schools.com/html/html_forms.asp
http://www.w3schools.com/html/html_form_elements.asp
http://www.w3schools.com/html/html_form_input_types.asp
http://www.w3schools.com/html/html_form_attributes.asp

● Form Checking and Validation

○ PHP $_GET, $_POST, $_REQUEST

○ PHP if($condition), elseif($condition), else statements

○ PHP isset(), empty()

○ PHP string functions strip_tags(), strip_slashes(), trim()

○ PHP regular expressions, preg_match(), preg_replace()

http://php.net/manual/en/reserved.variables.get.php
http://php.net/manual/en/reserved.variables.post.php
http://php.net/manual/en/reserved.variables.request.php
http://php.net/manual/en/control-structures.if.php
http://php.net/manual/en/control-structures.elseif.php
http://php.net/manual/en/control-structures.else.php
http://php.net/manual/en/function.isset.php
http://php.net/manual/en/function.empty.php
http://php.net/manual/en/function.strip-tags.php
http://php.net/manual/en/function.stripslashes.php
http://php.net/manual/en/function.trim.php
http://www.phpliveregex.com/
http://php.net/manual/en/function.preg-match.php
http://php.net/manual/en/function.preg-replace.php

